Search for the Standard Model Higgs at Tevatron

Rocío Vilar Cortabitarte for the CDF and D0 collaboration

Instituto de Física de Cantabria - CSIC-UC

21-26th June 2009 XXIèmes Rencontres de Blois: Windows on the Universe

() D(9)

A) Search for the SM Higgs 23 June 2009

- Introduction
 - Tevatron
 - Experiments
 - Higgs Boson in SM
- Tevatron Results
 - Low Higgs Mass region
 - WH $\rightarrow l\nu b\bar{b}$
 - $ZH \rightarrow IIb\bar{b}$
 - $VH \rightarrow b\bar{b}+$ Missing Transverse Energy
 - High Higgs Mass region
 - $\bullet H \rightarrow WW$
 - Other Analysis
 - Combination
 - Individual experiments combination
 - Tevatron combination
- Conclusions and Perspective

Tevatron Performance

Highest-energy operational accelerator $(p\bar{p}) \Rightarrow \sqrt{s} = 1.96 \, TeV$

performing very well!!

Typical initial inst. Luminosity: $\approx 3.3(3.5) \cdot 10^{32} cm^{-2} s^{-1}$

Integrated Luminosity/week (month): $\approx 75pb^{-1}/(260pb^{-1})$

Detectors

Standard Model Higgs Boson

- The SM has a broken symmetry: Particles have masses
- Within SM the responsible for the EWSB the Higgs mechanism → Higgs Boson
 - allows fermion masses through Yukawa couplings
- Higgs boson has not been observed yet but:
 - Lower bound from LEP limits: $M_H \ge 114.4$
 - Global EW Fit favors a low Higgs Mass:

$$M_H = 90^{+34}_{-27} \, GeV$$
 $M_H \leq 163(191) \, GeV \, \, (at \, 95\% \, \, C.L)$

Production and Decay at Tevatron

() D(9)

- Low Mass ($M_H \leq \sim 135 \; GeV$)
 - $gg \to H$ production and $H \to b\bar{b}$ decay mode dominant but overwhelmed by QCD background
 - Use VH production
- High Mass ($M_H \ge \sim 135 \; GeV$)
 - ullet gg
 ightarrow H production mode and H
 ightarrow WW decay mode are dominant in this region
 - Use this channel

(IFCA)

Production and Decay at Tevatron

- Low Mass ($M_H \leq \sim 135 \ GeV$)
 - $gg \to H$ production and $H \to b\bar{b}$ decay mode dominant but overwhelmed by QCD background
 - Use VH production
- High Mass ($M_H > \sim 135 \ GeV$)
 - $gg \rightarrow H$ production mode and $H \rightarrow WW$ decay mode are dominant in this region
 - Use this channel

Production and Decay at Tevatron

- Low Mass ($M_H \leq \sim 135 \; GeV$)
 - gg o H production and $H o b ar{b}$ decay mode dominant but overwhelmed by QCD background
 - Use VH production
- High Mass ($M_H \ge \sim 135 \ GeV$)
 - ullet gg
 ightarrow H production mode and H
 ightarrow WW decay mode are dominant in this region
 - Use this channel

- Triggers: High P_T lepton $(e \ \mu)$, jet and Transverse Missing Energy (\mathbb{K}_T) , and dedicated τ triggers
- Lepton Id: Optimization using large samples of W/Z bosons
- Jet Energy resolution and Jet Identification algorithm:

- Triggers: High P_T lepton $(e \ \mu)$, jet and Transverse Missing Energy $(\not\!\! E_T)$, and dedicated τ triggers
- Lepton Id: Optimization using large samples of W/Z bosons
- Jet Energy resolution and Jet Identification algorithm:
 - B-jet identification (b-taggers):
 Secondary vertex reconstruction, Jet probability, Neural Network and Flavor separators

- Triggers: High P_T lepton $(e \ \mu)$, jet and Transverse Missing Energy $(\not\!\! E_T)$, and dedicated τ triggers
- Lepton Id: Optimization using large samples of W/Z bosons
- Jet Energy resolution and Jet Identification algorithm:
 - B-jet identification (b-taggers):
 Secondary vertex reconstruction, Jet probability, Neural Network and Flavor separators

(1) [1](0)

Experimental Challenges

- Understanding backgrounds
 - SM creates a large variety of background
 - W/Z+jets, dibosons, top, etc. modeled from MC
 - Mistags, QCD modeled from data
 - Critical issues for Higgs
 - Control regions to check bkg prediction
 - Constrain bkg. prediction → precise measurements of SM cross section
 - Testing tools and techniques: Measurements of bkg. processes such as WW, WZ, single-top, etc.
- Advanced analysis techniques (Neural Networks(NN), Boosted Decision Trees (BDT) and Matrix element (ME)

 $\label{eq:higgs} \mbox{Higgs signal is 10 orders of magnitude smaller than background}$

- Understanding backgrounds
 - SM creates a large variety of background
 - ullet W/Z+jets, dibosons, top, etc. modeled from MC
 - Mistags, QCD modeled from data
 - Critical issues for Higgs
 - Control regions to check bkg. prediction
 - Constrain bkg. prediction → precise measurements of SM cross section
 - Testing tools and techniques: Measurements of bkg. processes such as WW, WZ, single-top, etc.
- Advanced analysis techniques (Neural Networks(NN), Boosted Decision Trees (BDT) and Matrix element (ME)

Single-top process has same signature than Higgs, was observed March09 using similar techniques than for Higgs searches. See talk A.Heinson

Higgs signal is 10 orders of magnitude smaller than background

- Understanding backgrounds
 - SM creates a large variety of background
 - ullet W/Z+jets, dibosons, top, etc. modeled from MC
 - Mistags, QCD modeled from data
 - Critical issues for Higgs
 - Control regions to check bkg. prediction
 - Constrain bkg. prediction → precise measurements of SM cross section
 - Testing tools and techniques: Measurements of bkg. processes such as WW, WZ, single-top, etc.
- Advanced analysis techniques (Neural Networks(NN), Boosted Decision Trees (BDT) and Matrix element (ME)

Single-top process has same signature than Higgs, was observed March09 using similar techniques than for Higgs searches. See talk A.Heinson

- Introduction
 - Tevatron
 - Experiments
 - Higgs Boson in SM
- Tevatron Results
 - Low Higgs Mass region
 - WH $\rightarrow l\nu b\bar{b}$
 - ZH → IIbb̄
 - $VH \rightarrow b\bar{b}+$ Missing Transverse Energy
 - High Higgs Mass region
 - $\bullet H \rightarrow WW$
 - Other Analysis
 - Combination
 - Individual experiments combination
 - Tevatron combination
- 3 Conclusions and Perspective

- Backgrounds: W+jets, top, Mistags, QCD, Z+jets, ..

- Backgrounds: W+jets, top, Mistags, QCD, Z+jets, ..
- Analysis strategy:
 - Split in tagging categories:
 - only 1 good identified b-jet or 2 or more b-jets

bkg.

EDF: have two analyses with NN and

BDT → Combined using another NN

• Use of Matrix Elements
Information in the MVA

- Signature: One High isolated P_T lepton, high E_T and 2 b-jets
- Backgrounds: W+jets, top, Mistags, QCD, Z+jets, ..
- Analysis strategy:
 - Split in tagging categories:
 - only 1 good identified b-jet or 2 or more b-jets
 - D0: use NN to separate signal from bkg.
 - CDF: have two analyses with NN and BDT → Combined using another NN
 - Use of Matrix Elements
 Information in the MVA

- Backgrounds: W+jets, top, Mistags, QCD, Z+jets, ..
- Analysis strategy:
 - Split in tagging categories:
 - only 1 good identified b-jet or 2 or more b-jets
 - D0: use NN to separate signal from bkg.
 - CDF: have two analyses with NN and BDT \rightarrow Combined using another NN
 - Use of Matrix Elements
 Information in the MVA

Exp.	Lum		Observed	
	(fb^{-1}) 95% C.L. limit/SM			
D0	2.7	6.7	6.4	
CDF	2.7	4.8	5.6	
$M_H = 115 \; GeV$				

$ZH \rightarrow llb\bar{b}$: Cleanest signature but low event rate

- Signature: two isolated High P_T leptons, and b-jets
- Backgrounds :Z+jets($\rightarrow b\bar{b}/c\bar{c}$), QCD, dibosons
- Analysis strategy
 - Extended lepton coverage and requiered M_{II} window
 - Split sample in tagging categorie
 - D0: Split samples also in lepton type
 - for each sample at each Higgs
 - CDF: Improve mass resolution correcting jet energies with E_{T} direction and magnitude
 - DF: Use 2D NN or Matrix Element

(IFCA)

$ZH \rightarrow llb\bar{b}$: Cleanest signature but low event rate

- Signature: two isolated High P_T leptons, and b-jets
- Backgrounds :Z+jets($\rightarrow b\bar{b}/c\bar{c}$), QCD, dibosons
- Analysis strategy:
 - Extended lepton coverage and requiered M_{II} window
 - Split sample in tagging categories

D0: Split samples also in lepton type D0: Use BDT optimized and trained

mass

CDF: Use 2D NN or Matrix Element

technique

$ZH \rightarrow IIb\bar{b}$: Cleanest signature but low event rate

- Signature: two isolated High P_T leptons, and b-jets
- Backgrounds :Z+jets($\rightarrow b\bar{b}/c\bar{c}$), QCD, dibosons
- Analysis strategy:
 - Extended lepton coverage and requiered M_{II} window
 - Split sample in tagging categories
 - D0: Split samples also in lepton type
 D0: Use BDT optimized and trained
 for each sample at each Higgs
 mass

CDF: Improve mass resolution correcting jet energies with ₺₁ direction and magnitude

CDF: Use 2D NN or Matrix Elemen

technique

$ZH ightarrow IIbar{b}$: Cleanest signature but low event rate

- Signature: two isolated High P_T leptons, and b-jets
- Backgrounds :Z+jets($\rightarrow b\bar{b}/c\bar{c}$), QCD, dibosons
- Analysis strategy:
 - Extended lepton coverage and requiered M_{II} window
 - Split sample in tagging categories
 - D0: Split samples also in lepton typeD0: Use BDT optimized and trained for each sample at each Higgs

mass
DF: Improve m

CDF: Improve mass resolution correcting jet energies with ₺¬ direction and magnitude

CDF: Use 2D NN or Matrix Element

techniques

$ZH \rightarrow llb\bar{b}$: Cleanest signature but low event rate

- Signature: two isolated High P_T leptons, and b-jets
- Backgrounds :Z+jets($\rightarrow b\bar{b}/c\bar{c}$), QCD, dibosons
- Analysis strategy:
 - Extended lepton coverage and requiered M_{II} window
 - Split sample in tagging categories
 - D0: Split samples also in lepton type
 D0: Use BDT optimized and trained
 for each sample at each Higgs
 mass
 - CDF: Improve mass resolution correcting jet energies with ₺T direction and magnitude
 - CDF: Use 2D NN or Matrix Element techniques

Exp.	Lum	Expected	Observed	
	(fb^{-1})	95% C.L.	limit/SM	
D0	4.2	8.0	9.1	
CDF NN	2.7	9.9	7.1	
CDF ME	2.7	12.21	7.8	
$M_{H}=115~GeV$				

- Signature: large \mathbb{E}_{T} and b-jets
- Backgrounds: QCD, Z/W+jets, Top and Diboson
- Analysis strategy:

- Backgrounds: QCD, Z/W+jets, Top and Diboson
- Analysis strategy:
 - Veto events with a lepton
 - Control Regions to model QCD and W+jets bck.
 - CDF: Remove 70% of QCD bkg. using a
 - CDF: Split events in tagging categories
 CDF: Use another NN to separate signal
 - D0: Use two *b*-tagged jets
 - D0: Use BDT to separate signal from background

- Signature: large \mathbb{E}_{T} and b-jets
- Backgrounds: QCD, Z/W+jets, Top and Diboson
- Analysis strategy:
 - Veto events with a lepton
 - Control Regions to model QCD and W+jets bck.

CDF: Remove 70% of QCD bkg. using a NN

CDF: Split events in tagging categories CDF: Use another NN to separate signal

from background

O: Use two b-tagged jet

D0: Use BDT to separate signal from

- Signature: large \mathbb{E}_{T} and b-jets
- Backgrounds: QCD, Z/W+jets, Top and Diboson
- Analysis strategy:
 - Veto events with a lepton
 - Control Regions to model QCD and W+jets bck.

CDF: Remove 70% of QCD bkg. using a NN

CDF: Split events in tagging categories CDF: Use another NN to separate signal from background

D0: Use two *b*-tagged jets

D0: Use BDT to separate signal from background

$VH \to E_T b\bar{b}$: Accept $WH \to \text{where lepton is not found}$ ($\approx 50\% \text{ of the signal}$)

• Signature: large $\mathbb{E}_{\mathbb{T}}$ and b-jets

 Backgrounds: QCD, Z/W+jets, Top and Diboson

Analysis strategy:

() D

Veto events with a lepton

 Control Regions to model QCD and W+jets bck.

CDF: Remove 70% of QCD bkg. using a NN

CDF: Split events in tagging categories CDF: Use another NN to separate signal from background

D0: Use two b-tagged jets

D0: Use BDT to separate signal from background

Exp.	Lum	Expected	Observed	
	(fb^{-1})	95% C.L.	limit/SM	
D0	2.1	8.4	7.5	
CDF	2.1	5.6	6.9	
$M_H=115$ GeV				

() D(9)

$H \rightarrow WW$: The most sensitive channel at Tevatron

- Signature: two isolated high P_T leptons and large E_T
- Background: WW, Drell-Yan, top, W plus jets
- Analysis strategy:
 - Use related $\mathbb{E}_{\mathbb{T}}$ variables and M_{II}

- Signature: two isolated high P_T leptons and large E_T
- Background: WW, Drell-Yan, top, W plus jets
- Analysis strategy:
 - Use related
 \mathbb{I}_T variables and M_{II} cut to reduce DY

- Signature: two isolated high P_T leptons and large E_T
- Background: WW, Drell-Yan, top, W plus jets
- Analysis strategy:

- Use related $\not\!\! E_{\mathrm{T}}$ variables and M_{II} cut to reduce DY
- CDF: Separate analysis in 0,1,2 jets using NN
- CDF: 0 jets use NN with Matrix Element
- CDF: 1,2 jets adds sensitivity from VH and VBF (NN)
 - D0: Separate lepton channels ee, $\mu\mu$
 - D0: Use NN optimized for each

- Signature: two isolated high P_T leptons and large E_T
- Background: WW, Drell-Yan, top, W plus jets
- Analysis strategy:

- Use related E_T variables and $M_{||}$ cut to reduce DY
- CDF: Separate analysis in 0,1,2 jets using NN
- CDF: 0 jets use NN with Matrix Element
- CDF: 1,2 jets adds sensitivity from VH and VBF (NN)
 - D0: Separate lepton channels ee, $\mu\mu$ and $e\mu$
 - D0: Use NN optimized for each channel

- Signature: two isolated high P_T leptons and large \mathbb{E}_T
- Background: WW, Drell-Yan, top, W plus jets
- Analysis strategy:

- CDF: Separate analysis in 0,1,2 jets using NN
- CDF: 0 jets use NN with Matrix Element
- CDF: 1,2 jets adds sensitivity from VH and VBF (NN)
 - D0: Separate lepton channels ee, $\mu\mu$ and e μ
 - D0: Use NN optimized for each channel

Exp.	Lum	Expected	Observed		
	(fb^{-1})	95% C.L. limit/SM			
D0	3.0-4.2	1.8	1.7		
CDF	3.6	1.5	1.5		
$M_H = 160 \; \text{GeV}$					

Other analysis: recent results

channel	Analysis Tech.	Lum	Expected	Observed
		(fb^{-1})	95% C.L. limit/SM	
CDF experiment				
$VH o qqbar{b}$	NN	2.0	36.8 (M _H =115GeV)	37.5 (M _H =115GeV)
$VH/VBF/gg \rightarrow H \rightarrow \tau \tau b \bar{b}$	NN	2.0	$26.1 \ (M_H = 115 \text{GeV})$	30.5 (M _H =115GeV)
$WH \rightarrow WWW$	NN	3.5	$7.22 \ (M_H = 160 \text{GeV})$	6.60 ($M_H = 160 \text{GeV}$)
D0 experiment				
$H o \gamma \gamma$	NN	4.2	18.5 (M _H =115GeV)	15.8 (M _H =115GeV)
$WH \rightarrow WWW$	MVA	2.5	$10.7 \ (M_H=160 \text{GeV})$	$18.4 \ (M_H = 160 \text{GeV})$
$ttH o t\overline{t}b\overline{b}$	Cut	2.1	45.3 (M _H =115GeV)	63.9 (M _H =115GeV)

There are more ongoing analysis in both experiments which contribute to increase the sentivity but the results have not been updated yet

(IFCA)

Combination

Experiments Combination

CDF Combination:

Bayesian method to estimate the limit

D0 Combination:

CLs method to estimate the limit

- Both experiments classifying the systematics uncertainties in two main classes
 - Rate syst.: Affects normalization of discriminators
 - Shapes syst.: Small effect on sensitivity. Modify shape of discriminators

Tevatron Combination

- ullet Full set of analysis has been used ($\mathcal{L}=0.9-4.2~\mathrm{fb}^{-1}$)
- Bayesian and modified frequentist approaches are performed given similar results
 - both methods rely on distribution rather than integrated values
 - both methods use likelihood based on Poisson probabilities
- Latest PDF and $gg \rightarrow H$ theoretical cross section are used
- Exclude a Higgs Mass Region from 160 to 170 GeV at 95% C.L.

- The Tevatron is performing really well and integrating luminosity faster than ever
- Both Experiments, CDF and D0, have a very active Higgs program with many channels, several analysis techniques.
- Tevatron has excluded a high mass region at 95%C.L. from 160 to 170 GeV
 - Continuous analysis upgrades improve sensitivo
 - Need final push to get sensitivity to all mass ranges
 - More Integrated Liminosity
 - Still room for improvements in new triggers, b-tagging, jet resolution.

- The Tevatron is performing really well and integrating luminosity faster than ever
- Both Experiments, CDF and D0, have a very active Higgs program with many channels, several analysis techniques.
- Tevatron has excluded a high mass region at 95%C.L. from 160 to 170 GeV
 - Continuous analysis upgrades improve sensitivity
 - Need final push to get sensitivity to all mass range

- The Tevatron is performing really well and integrating luminosity faster than ever
- Both Experiments, CDF and D0, have a very active Higgs program with many channels, several analysis techniques.
- Tevatron has excluded a high mass region at 95%C.L. from 160 to 170 GeV
 - Continuous analysis upgrades improve sensitivity
 - Need final push to get sensitivity to all mass ranges
 - More Integrated Luminosity
 - Still room for improvements in new triggers. b-tagging, jet resolution...

- The Tevatron is performing really well and integrating luminosity faster than ever
- Both Experiments, CDF and D0, have a very active Higgs program with many channels, several analysis techniques.
- Tevatron has excluded a high mass region at 95%C.L. from 160 to 170 GeV
 - Continuous analysis upgrades improve sensitivity
 - Need final push to get sensitivity to all mass ranges

Search for the Higgs Particle

Status as of March 2009

90% confidence level
95% confidence level
95% confidence level

Excluded by Treatron
Experiments
95% confidence level
95% confidence level

Figure mass values

Higgs mass values

- The Tevatron is performing really well and integrating luminosity faster than ever
- Both Experiments, CDF and D0, have a very active Higgs program with many channels, several analysis techniques.
- Tevatron has excluded a high mass region at 95%C.L. from 160 to 170 GeV
 - Continuous analysis upgrades improve sensitivity
 - Need final push to get sensitivity to all mass ranges
 - More Integrated Luminosity
 - Still room for improvements in new triggers, b-tagging, jet resolution...

Stay tune for coming results

Thanks

Backup Slides from Tom Junk

Recent $gg \rightarrow H$ production cross section progress

- NLO corrections $\tilde{8}0\%$ (almost double the cross section)
- NNLO QCD corrections An additional 40% on top of that
- Residual uncertainty 10%. Catani, de Florian, Grazzini, Nason JHEP 0307, 028 (2003) hep-ph/0306211
- Also resummed QCD corrections at NNLL

NLL,NNLL bands: $0.5mH \leq \mu F, \mu R \leq 2MH. \ \ \text{Bands on LO}$ and LL unreliable.

tevatron Performance Constantly improves

A partial list of improvements:

- Store antiprotons in recycler
- ullet Faster transfers from ar p accumulator to recycler
- Electron cooling of pbars in recycler
- Efficiency and reliability of injection
- Faster shot setup
- Separation of orbits at parasitic crossings
- Replacement of 1200 He relief valves
- Faster beam aborts during quenches
- cogging phars to prevent quenches during acceleration

CDF Detector Coverage

Lepton coverage:

 $|\eta|$ < 1.5 (muons) $|\eta|$ < 2.0 (electrons)

b-tagging with $|\eta| < \sim 1.4$

Jets to $|\eta| < 2.8$ Higgs analyses restrict to $|\eta| < 2.0$

Dijet mass resolution: ~16%

D0 Detector Coverage

The Detector

Similar dijet mass resolution to CDF

Lepton coverage: $|\eta| < 2$ (muons) $|\eta| < 2.6$ (electrons)

b-tagging with

|η| < ~2

Jets to $|\eta| < 3$

New Innermost Silicon Layer added between Run IIa and Run IIb

23 / 34

CDF Run II Preliminary

Checking Signal Regions

Checking The Signal Region

f L dt = 3.6 fb

24 / 34

Steps Required for Combination

- histograms(75 channels, 23 from CDF and 52 from D0) and named rate and shape errors exchanged
- Check stacked histograms and systematic tables with analysis documentation total counts: Data, signal, background
- ullet Repeat individual channel limits o compare against approved results
- Asses correlations on systematics

CDF and D0 teams each do three combinations, using Bayesian and ${\it CL}_{\it s}$ techniques: CDF, D0 and Tevatron

Consistency at the better than 10% level requiered for all combinaitons at all test masses. Take the weaker limits

Tevatron Correlated systematics

- Total systematic error count : 109 (not counting bin-by-bin errors)
- Note: correlations in errors on backgorund betwen experiments helps sensitivity One experiment is another exp. control sample
- Luminosity: 3.8% correlated CDF and D0 from $\sigma_{ine\,p\bar{p}}$, 4.4% detector specific
- Diboson Cross sections (6% relative uncertainty)
- $t\bar{t}$ cross section: Moch and Uwer, evaluated at $m_t=172.4\pm1.2$ GeV $ightarrow \sigma_{t\bar{t}}=7.79$ pb with a 10% systematic uncertainty.
- Signal Cross sections: VH is 5%, $gg \rightarrow H$ is 12% and VBF is 10%

Tevatron Correlated systematics II

- CDF-D0 uncorrelated errors but correlated within the experiments where appropriate:
 - k-factors (data driven)
 - trigger efficiencies
 - b-tag efficiencies and mistags
 - jet energy scale
 - lepton id.fakes and conversions

() D

A Close-Up in the Highest s/b bins at m_H=165 GeV

The Last Few Bins' Contents:

Signal yield (events)	Background yield (events)	Data
0.028	0.017	0
0.073	0.060	0
0.918	1.065	1
0.598	0.987	0
3.14	7.84	4
1.38	5.38	3
4.61	25.0	26

Higgs Boson Production Cross Sections and Branching Ratios

m_H	$\sigma_{gg \to H}$	σ_{WH}	σ_{ZH}	σ_{VBF}	$B(H \rightarrow b\bar{b})$	$B(H \rightarrow \tau^+\tau^-)$	$B(H \rightarrow W^+W^-)$
(GeV/c^2)	(fb)	(fb)	(fb)	(fb)	(%)	(%)	(%)
100	1861	286.1	166.7	99.5	81.21	7.924	1.009
105	1618	244.6	144.0	93.3	79.57	7.838	2.216
110	1413	209.2	124.3	87.1	77.02	7.656	4.411
115	1240	178.8	107.4	79.07	73.22	7.340	7.974
120	1093	152.9	92.7	71.65	67.89	6.861	13.20
125	967	132.4	81.1	67.37	60.97	6.210	20.18
130	858	114.7	70.9	62.5	52.71	5.408	28.69
135	764	99.3	62.0	57.65	43.62	4.507	38.28
140	682	86.0	54.2	52.59	34.36	3.574	48.33
145	611	75.3	48.0	49.15	25.56	2.676	58.33
150	548	66.0	42.5	45.67	17.57	1.851	68.17
155	492	57.8	37.6	42.19	10.49	1.112	78.23
160	439	50.7	33.3	38.59	4.00	0.426	90.11
165	389	44.4	29.5	36.09	1.265	0.136	96.10
170	349	38.9	26.1	33.58	0.846	0.091	96.53
175	314	34.6	23.3	31.11	0.663	0.072	95.94
180	283	30.7	20.8	28.57	0.541	0.059	93.45
185	255	27.3	18.6	26.81	0.420	0.046	83.79
190	231	24.3	16.6	24.88	0.342	0.038	77.61
195	210	21.7	15.0	23	0.295	0.033	74.95
200	192	19.3	13.5	21.19	0.260	0.029	73.47

gg→H from Grazzini and de Florian, similar to those of other authors

Tevatron Combined Limits

mass	obs	-2σ	-1σ	exp	+1σ	+2σ
100	1.95	1.1	1.45	2.04	2.89	4.02
105	1.79	1.14	1.49	2.04	2.82	3.84
110	2.40	1.22	1.61	2.22	3.09	4.23
115	2.54	1.27	1.70	2.36	3.28	4.48
120	2.86	1.54	1.99	2.72	3.79	5.21
125	3.00	1.64	2.12	2.89	3.99	5.45
130	3.53	1.66	2.16	2.94	4.06	5.55
135	2.36	1.41	1.93	2.69	3.73	5.06
140	2.69	1.36	1.83	2.53	3.51	4.75
145	2.84	1.27	1.71	2.39	3.35	4.57
150	1.88	0.99	1.32	1.83	2.55	3.50
155	1.35	0.83	1.10	1.53	2.12	2.90
160	0.99	0.61	0.82	1.14	1.59	2.18
165	0.86	0.64	0.84	1.15	1.60	2.18
170	0.99	0.72	0.96	1.35	1.89	2.59
175	1.07	0.89	1.16	1.58	2.18	2.99
180	1.18	1.05	1.36	1.90	2.71	3.79
185	1.73	1.35	1.81	2.51	3.52	4.85
190	1.96	1.59	2.10	2.94	4.20	5.92
195	2.64	2.07	2.72	3.72	5.12	6.96
200	3.29	2.19	2.96	4.11	5.72	7.83

(IFCA) Search for the SM Higgs 23 June 2009 30 / 34

(1) [1](0)

Mini-Review: CL, Limits

p-values:

Yellow area =
$$1-CL_b$$
 = $1-P(-2lnQ>-2lnQ_{obs}|b only)$
Green area = CL_{s+b} = $P(-2lnQ>-2lnQ_{obs}|s+b)$

$$CL_s = CL_{s+b}/CL_b \ge CL_{s+b}$$

Exclude if $CL_s < 0.05$
Vary r until $CL_s = 0.05$ to get r_{lim}

- · Advantages:
 - Exclusion and Discovery p-values are consistent.
 Example -- a 2σ upward fluctuation of the data with respect to the background prediciton appears both in the limit and the p-value as such
 - Does not exclude where there is no sensitivity (big enough search region with small enough resolution and you get a 5% dusting of random exclusions with

Mini-Review: Bayesian Limits

$$L(r,\theta) = \prod_{channels \ bins} P_{Poiss}(data \mid r,\theta)$$

Where r is an overall signal scale factor, and θ represents all nuisance parameters.

$$P_{Poiss}(data \mid r, \theta) = \frac{\left(rs_i(\theta) + b_i(\theta)\right)^{n_i} e^{-\left(rs_i(\theta) + b_i(\theta)\right)}}{n_i!}$$

where n_i is observed in each bin i, s_i is the predicted signal for a fiducial model (SM), and b_i is the predicted background. Dependence of s_i and b_i on θ includes rate, shape, and bin-by-bin independent uncertainties.

Mini-Review: Bayesian Limits

Including uncertainties on nuisance parameters θ

$$L'(data \mid r) = \int L(data \mid r, \theta) \pi(\theta) d\theta$$

where $\pi(\theta)$ encodes our prior belief in the values of the uncertain parameters. Usually Gaussian centered on the best estimate and with a width given by the systematic. Includes rate uncertainites, shape uncertainites, MC statistics in each bin.

$$0.95 = \int_{0}^{r_{\text{lim}}} L'(data \mid r) \pi(r) dr$$

Sensitivity = Median Expected Limit

- Run simulated background-only MC pseudoexperiments (fluctuate all systematics)
- Compute r_{lim} for each one; find medain and $\pm 1,2\sigma$ variations.

Contribution	W + HF	Mistags	Top	Diboson	Non-W	WI
Luminosity $(\sigma_{inel}(p\bar{p}))$	0	0	3.8	3.8	0	3.8
Luminosity Monitor	0	0	4.4	4.4	0	4.4
Lepton ID	0	0	2	2	0	2
Jet Energy Scale	0	0	0	0	0	2
Mistag Rate	0	9.0	0	0	0	0
B-Tag Efficiency	0	0	8.4	8.4	0	8.4
$t\bar{t}$ Cross Section	0	0	10	0	0	0
Diboson Rate	0	0	0	11.5	0	0
Signal Cross Section	0	0	0	0	0	5
HF Fraction in W+jets	30.1	0	0	0	0	0
ISR+FSR+PDF	0	0	0	0	0	5.6
QCD Rate	0	0	0	0	40	0
	CDF	: loose double-tag	(LDT) WH —	$\ell \nu b \bar{b}$		
Contribution					Non-W	W
Contribution	CDF W+HF	Mistags	Top	Diboson	Non-W	W1
Luminosity $(\sigma_{\text{inel}}(p\bar{p}))$			Top 3.8	Diboson 3.8	Non-W	3.
Luminosity $(\sigma_{\text{inel}}(p\bar{p}))$ Luminosity Monitor		Mistags	Top 3.8 4.4	Diboson 3.8 4.4		3. 4.
Luminosity $(\sigma_{\text{inel}}(p\bar{p}))$ Luminosity Monitor Lepton ID		Mistags	Top 3.8 4.4 2	Diboson 3.8 4.4 2		3. 4. 2
Luminosity $(\sigma_{\text{inel}}(p\bar{p}))$ Luminosity Monitor Lepton ID Jet Energy Scale		Mistags 0 0 0 0	Top 3.8 4.4	Diboson 3.8 4.4		3. 4. 2 2
Luminosity $(\sigma_{\text{inel}}(p\bar{p}))$ Luminosity Monitor Lepton ID Jet Energy Scale Mistag Rate		Mistags	Top 3.8 4.4 2 0 0	Diboson 3.8 4.4 2 0 0		3. 4. 2 2 0
Luminosity $(\sigma_{\text{inel}}(p\bar{p}))$ Luminosity Monitor Lepton ID Jet Energy Scale Mistag Rate B-Tag Efficiency		Mistags 0 0 0 0 0 8.0	Top 3.8 4.4 2 0 0 9.1	Diboson 3.8 4.4 2 0		3. 4. 2 2 0 9.
Luminosity $(\sigma_{\text{inel}}(p\bar{p}))$ Luminosity Monitor Lepton ID Jet Energy Scale Mistag Rate B-Tag Efficiency $t\bar{t}$ Cross Section		Mistags 0 0 0 0 0 8.0	Top 3.8 4.4 2 0 0	Diboson 3.8 4.4 2 0 0 9.1 0		3. 4. 2 2 0 9.
Luminosity $(\sigma_{\text{inel}}(p\bar{p}))$ Luminosity Monitor Lepton ID Jet Energy Scale Mistag Rate B-Tag Efficiency $t\bar{t}$ Cross Section Diboson Rate		Mistags 0 0 0 0 0 8.0	Top 3.8 4.4 2 0 0 9.1 10	Diboson 3.8 4.4 2 0 0 9.1		3. 4. 2 2 0 9.
Luminosity $(\sigma_{\text{inel}}(p\bar{p}))$ Luminosity Monitor Lepton ID Jet Energy Scale Mistag Rate B-Tag Efficiency $t\bar{t}$ Cross Section Diboson Rate Signal Cross Section	W+HF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mistags 0 0 0 0 0 8.0	Top 3.8 4.4 2 0 0 9.1 10	Diboson 3.8 4.4 2 0 0 9.1 0		W. 3.4 4 2 2 2 0 0 9 0 0 5 5 0 0
Luminosity $(\sigma_{\text{inel}}(p\bar{p}))$		Mistags 0 0 0 0 0 8.0	Top 3.8 4.4 2 0 0 9.1 10	Diboson 3.8 4.4 2 0 0 9.1 0		3.3 4 2 2 2 0 9

() 📭

QCD Rate

OCD Pate

40

34 / 34

CDF: single tag (ST) $WH \rightarrow \ell \nu b \bar{b}$						
Contribution	$W+{ m HF}$	Mistags	Тор	Diboson	Non-W	WH
Luminosity $(\sigma_{inel}(p\bar{p}))$	0	0	3.8	3.8	0	3.8
Luminosity Monitor	0	0	4.4	4.4	0	4.4
Lepton ID	0	0	2	2	0	2
Jet Energy Scale	0	0	0	0	0	2
Mistag Rate	0	13.3	0	0	0	0
B-Tag Efficiency	0	0	3.5	3.5	0	3.5
$t\bar{t}$ Cross Section	0	0	10	0	0	0
Diboson Rate	0	0	0	11.5	0	0
(IFCA)	^	Search for the	ne SM Higgs	^	^	23 June 2
ISR+FSR+PDF	0	ő	0	ŏ	ő	3.1